By Ajay K. Nooka, MD, et al.

ABSTRACT

PURPOSE

Vaccine-induced neutralizing antibodies (nAbs) play a critical role in protection from SARS CoV-2. Patients with B-cell malignancies including myeloma are at increased risk of COVID-19–related mortality and exhibit variable serologic response to the vaccine. The capacity of vaccine-induced antibodies in these patients to neutralize SARS CoV-2 or its variants is not known.

METHODS

Sera from 238 patients with multiple myeloma (MM) undergoing SARS CoV-2 vaccination were analyzed. Antibodies against the SARS CoV-2 spike receptor-binding domain (RBD) and viral nucleocapsid were measured to detect serologic response to vaccine and environmental exposure to the virus. The capacity of antibodies to neutralize virus was quantified using pseudovirus neutralization assay and live virus neutralization against the initial SARS CoV-2 strain and the B1.617.2 (Delta) variant.

RESULTS

Vaccine-induced nAbs are detectable at much lower rates (54%) than estimated in previous seroconversion studies in MM, which did not monitor viral neutralization. In 33% of patients, vaccine-induced antispike RBD antibodies lack detectable neutralizing capacity, including against the B1.617.2 variant. Induction of nAbs is affected by race, disease, and treatment-related factors. Patients receiving mRNA1273 vaccine (Moderna) achieved significantly greater induction of nAbs compared with those receiving BNT162b2 (Pfizer; 67% v 48%, P = .006).

CONCLUSION

These data show that vaccine-induced antibodies in several patients with MM lack detectable virus-neutralizing activity. Vaccine-mediated induction of nAbs is affected by race, disease, vaccine, and treatment characteristics. These data have several implications for the emerging application of booster vaccines in immunocompromised hosts.

Link to Article

Comments

0 Comments

Submit a Comment